Hygroscopicity and composition of Alaskan Arctic CCN during April 2008
نویسندگان
چکیده
We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including a cleaner Arctic background and a relatively pristine sea ice boundary layer as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Organic aerosols sampled were found to be well-oxygenated, consistent with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosols act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, nonCCN-active mode comprising approximately 0–20 % of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (±0–20 %) obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and Correspondence to: A. Nenes ([email protected]) the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5to 3-fold overprediction at lower concentrations.
منابع مشابه
Organic Functional Group Contributions to Cloud Condensation Nuclei in the Arctic During ICEALOT 2008
Cloud condensation nuclei (CCN) affect cloud droplet formation processes as well as number concentration. An increase in cloud droplet number concentration influences the Earth’s radiative balance by increasing the reflected incoming solar radiation. Chemical composition influences the properties of the aerosol particles, which impact their ability to act as CCN. Organic functional groups in pa...
متن کاملEffects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect
Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosol...
متن کاملMeasured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch
Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN) and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS = 0.12–1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (358...
متن کاملConsistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise
Results from a measurement study performed in the Tropical Atlantic on board the RHaMBLe Discovery Cruise D319 are presented. Measurements of aerosol composition, hygroscopicity and CCN activity were used to test the ability of a single parameter model to describe water uptake in suband supersaturated conditions. It was found that the magnitude and temporal variability of the sub-saturated wate...
متن کاملAerosol hygroscopicity and cloud condensation nuclei activity during the ACExp campaign: implications for cloud condensation nuclei parameterization
Aerosol hygroscopicity and cloud condensation nuclei (CCN) activity under background conditions and during pollution events are investigated during the AerosolCCN-Cloud Closure Experiment (ACExp) campaign conducted at Xianghe, China in summer 2013. A gradual increase in size-resolved activation ratio (AR) with particle diameter (Dp) suggests that aerosol particles have different hygroscopicitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011